Arthropod pests represent an important threat to agricultural production, causing both direct feeding damage and transmitting important diseases. Without pest control, yield losses are typically around 20% and can be considerably higher depending on the crop/pest. Currently, integrated pest management (IPM) is considered the most effective and environmentally sensitive approach to combatting pests, integrating cultural practices and the use of chemical and biological control measures. Indeed, the overall objective of the EU in its directive 2009/128/EC is to establish “... a framework to achieve the sustainable use of pesticides by reducing the risks and impacts of pesticide use on human health and the environment and promoting the use of Integrated Pest Management and of alternative approaches or techniques such as non-chemical alternatives to pesticides”.

Chemical pesticides have proven to be highly effective in controlling pests and are in part responsible for the substantial increase in food production over the last 60 years. Although their chemical, environmental and toxicological properties have been improved, their intensive use, and in some cases misuse, has led to the evolution of resistance in many pest populations in the field and in some cases contributed to environmental contamination. Furthermore, only 26% of the approximately 1000 active substances on the market in 1993 have passed the recently introduced harmonised EU safety assessment resulting in a limited arsenal of active compounds for control programs. Therefore, a major goal of agrochemical companies is to design highly specific insecticides, targeting the pest but with minimal or no toxicity to beneficial organisms. However, the cost of bringing a new pesticide to market is now very high and it is a lengthy process, limiting the number of compounds becoming available.

It is of the upmost importance to protect those pesticides, with a good environmental profile and proven efficacy in controlling target pests, from the evolution of resistance in field populations. We are contributing to this goal through four independent research lines:

 
 

Millán-Leiva, A., Ó. Marín, P. De la Rúa, I. Muñoz, A. Tsagkarakou, H. Eversol, K. Christmon, D. vanEngelsdorp, and J. González-Cabrera. 2021. Mutations associated with pyrethroid resistance in the honey bee parasite Varroa destructor evolved as a series of parallel and sequential events. Journal of Pest Science.

https://link.springer.com/article/10.1007/s10340-020-01321-8#Sec12



Hernández-Rodríguez, C. S., Ó. Marín, F. Calatayud, M. J. Mahiques, A. Mompó, I. Segura, E. Simó, and J. González-Cabrera. 2021. Large-scale monitoring of resistance to coumaphos, amitraz, and pyrethroids in Varroa destructor. Insects 12.

https://www.mdpi.com/2075-4450/12/1/27



Benavent-Albarracín, L., M. Alonso, J. Catalán, A. Urbaneja, T. G. E. Davies, M. S. Williamson, and J. González-Cabrera. 2020. Mutations in the voltage-gated sodium channel gene associated with deltamethrin resistance in commercially sourced Phytoseiulus persimilis. Insect Mol Biol 29: 373-380.

https://www.ncbi.nlm.nih.gov/pubmed/32249467



Calvo-Agudo, M., J. González-Cabrera, D. Sadutto, Y. Picó, A. Urbaneja, M. Dicke, and A. Tena. 2020. IPM-recommended insecticides harm beneficial insects through contaminated honeydew. Environmental Pollution 267: 115581.

https://www.sciencedirect.com/science/article/pii/S0269749120362692



Urbaneja-Bernat, P., A. Tena, J. González-Cabrera, and C. Rodríguez-Saona. 2020. Plant guttation provides nutrient-rich food for insects. Proceedings of the Royal Society B: Biological Sciences 287: 20201080.

https://www.ncbi.nlm.nih.gov/pubmed/31383752



Calvo-Agudo, M., J. González-Cabrera, Y. Picó, P. Calatayud-Vernich, A. Urbaneja, M. Dicke, and A. Tena. 2019. Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci USA 116: 16817-16822.

https://www.pnas.org/content/pnas/116/34/16817.full.pdf



Herrero, S., A. Millán-Leiva, S. Coll, R. M. González-Martínez, S. Parenti, and J. González-Cabrera. 2019. Identification of new viral variants specific to the honey bee mite Varroa destructor. Experimental and Applied Acarology 79: 157-168.

https://www.ncbi.nlm.nih.gov/pubmed/31624979



Paspati, A., K. B. Ferguson, E. C. Verhulst, A. Urbaneja, J. González‐Cabrera, and B. A. Pannebakker. 2019. Effect of mass rearing on the genetic diversity of the predatory mite Amblyseius swirskii. Entomologia Experimentalis et Applicata 167: 670-681.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.12811



Urbaneja-Bernat, P., P. Bru, J. González-Cabrera, A. Urbaneja, and A. Tena. 2019. Reduced phytophagy in sugar-provisioned mirids. Journal of Pest Science 92: 1139-1148.

https://link.springer.com/article/10.1007/s10340-019-01105-9



Farjamfar, M., A. Saboori, J. González-Cabrera, and C. S. Hernández Rodríguez. 2018. Genetic variability and pyrethroid susceptibility of the parasitic honey bee mite Varroa destructor (Acari: Varroidae) in Iran. Exp Appl Acarol 76: 139-148.

https://www.ncbi.nlm.nih.gov/pubmed/30238306



González-Cabrera, J., H. Bumann, S. Rodríguez-Vargas, P. J. Kennedy, K. Krieger, G. Altreuther, A. Hertel, G. Hertlein, R. Nauen, and M. S. Williamson. 2018. A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. Journal of Pest Science. 91: 1137-1144.

https://link.springer.com/article/10.1007%2Fs10340-018-0968-y



Millán-Leiva, A., C. S. Hernández-Rodríguez, and J. González-Cabrera. 2018. New PCR–RFLP diagnostics methodology for detecting Varroa destructor resistant to synthetic pyrethroids. Journal of Pest Science. 91: 937-941.

http://www.ncbi.nlm.nih.gov/pubmed/27191597 



González-Cabrera, J., S. Rodríguez-Vargas, T. G. Davies, L. M. Field, D. Schmehl, J. D. Ellis, K. Krieger, and M. S. Williamson. 2016. Novel Mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA. PLoS One 11: e0155332.

https://link.springer.com/article/10.1007%2Fs10340-018-0964-2 



O'Reilly, A. O., M. S. Williamson, J. González-Cabrera, A. Turberg, L. M. Field, B. A. Wallace, and T. G. Davies. 2014. Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites. Pest Manag Sci 70: 369-377.

http://www.ncbi.nlm.nih.gov/pubmed/23589444 



González-Cabrera, J., T. G. E. Davies, L. M. Field, P. J. Kennedy, and M. S. Williamson. 2013. An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor. PLoS ONE 8: e82941.

http://dx.doi.org/10.1371%2Fjournal.pone.0082941 



 

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies
Social media & sharing icons powered by UltimatelySocial