2021
Mutations associated with pyrethroid resistance in the honey bee parasite Varroa destructor evolved as a series of parallel and sequential events. Journal of Pest Science.
+ more infoMillán-Leiva, A., Ó. Marín, P. De la Rúa, I. Muñoz, A. Tsagkarakou, H. Eversol, K. Christmon, D. vanEngelsdorp, and J. González-Cabrera.
link
Tomato trichomes are deadly hurdles limiting the establishment of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Biological Control 157
+ more infoPaspati, A., J. L. Rambla, M. P. López Gresa, V. Arbona, A. Gómez-Cadenas, A. Granell, J. González-Cabrera, and A. Urbaneja
link
Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu Rev Entomol 66: 121-140.
+ more infoMutations associated with pyrethroid resistance in Varroa mite, a parasite of honey bees, are widespread across the United States. Pest Manag Sci.
+ more infoResponse Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 85.
+ more infoLarge-scale monitoring of resistance to coumaphos, amitraz, and pyrethroids in Varroa destructor. Insects 12.
+ more infoHernández-Rodríguez, C. S., Ó. Marín, F. Calatayud, M. J. Mahiques, A. Mompó, I. Segura, E. Simó, and J. González-Cabrera.
link
2020
Mutations in the voltage-gated sodium channel gene associated with deltamethrin resistance in commercially sourced Phytoseiulus persimilis. Insect Mol Biol 29: 373-380.
+ more infoBenavent-Albarracín, L., M. Alonso, J. Catalán, A. Urbaneja, T. G. E. Davies, M. S. Williamson, and J. González-Cabrera.
link
Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis. J Invertebr Pathol: 107439
+ more infoUnraveling the Composition of Insecticidal Crystal Proteins in Bacillus thuringiensis: a Proteomics Approach. Appl Environ Microbiol 86
+ more infoCaballero, J., N. Jiménez-Moreno, I. Orera, T. Williams, A. B. Fernández, M. Villanueva, J. Ferré, P. Caballero, and C. Ancín-Azpilicueta.
link
IPM-recommended insecticides harm beneficial insects through contaminated honeydew. Environmental Pollution 267
+ more infoEvaluation of the Toxicity of Supernatant Cultures and Spore-Crystal Mixtures of Bacillus thuringiensis Strains Isolated from Algeria. Curr Microbiol 77: 2904-2914.
+ more infoDomain Shuffling between Vip3Aa and Vip3Ca: Chimera Stability and Insecticidal Activity against European, American, African, and Asian Pests. Toxins (Basel) 12
+ more infoGomis-Cebolla, J., R. Ferreira Dos Santos, Y. Wang, J. Caballero, P. Caballero, K. He, J. L. Jurat-Fuentes, and J. Ferré.
link
Assessing the resistance to acaricides in Varroa destructor from several Spanish locations. Parasitol Res 119: 3595-3601.
+ more infoNext-generation biological control: the need for integrating genetics and genomics. Biol Rev Camb Philos Soc.
+ more infoLeung, K., E. Ras, K. B. Ferguson, S. Ariens, D. Babendreier, P. Bijma, K. Bourtzis, J. Brodeur, M. A. Bruins, A. Centurion, S. R. Chattington, M. Chinchilla-Ramirez, M. Dicke, N. E. Fatouros, J. González-Cabrera, T. V. M. Groot, T. Haye, M. Knapp, P. Koskinioti, S. Le Hesran, M. Lyrakis, A. Paspati, M. Pérez-Hedo, W. N. Plouvier, C. Schlotterer, J. M. Stahl, A. Thiel, A. Urbaneja, L. van de Zande, E. C. Verhulst, L. E. M. Vet, S. Visser, J. H. Werren, S. Xia, B. J. Zwaan, S. Magalhaes, L. W. Beukeboom, and B. A. Pannebakker
link
Coupling Transcriptomics and Behaviour to Unveil the Olfactory System of Spodoptera exigua Larvae. J Chem Ecol.
+ more infoInfluence of Diet, Sex, and Viral Infections on the Gut Microbiota Composition of Spodoptera exigua Caterpillars. Front Microbiol 11: 753.
+ more infoMolecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis. Nat Commun 11: 3974.
+ more infoReduced Membrane-Bound Alkaline Phosphatase Does Not Affect Binding of Vip3Aa in a Heliothis virescens Resistant Colony. Toxins (Basel) 12.
+ more infoPinos, D., M. Chakroun, A. Millán-Leiva, J. L. Jurat-Fuentes, D. J. Wright, P. Hernández-Martínez, and J. Ferré.
link
Three-Way Interactions between Plants, Microbes, and Arthropods (PMA): Impacts, Mechanisms, and Prospects for Sustainable Plant Protection. Plant Cell 32: 1-11.
+ more infoPozo, M. J., B. R. Albrectsen, E. R. Bejarano, E. de la Pena, S. Herrero, A. Martinez-Medina, V. Pastor, S. Ravnskov, and A. Biere.
link
Plant guttation provides nutrient-rich food for insects. Proc Biol Sci 287: 20201080.
+ more infoBacillus thuringiensis toxins: functional characterization and mechanism of action. Toxins (Basel) 12: 785
+ more info2019
Specific binding of Bacillus thuringiensis Cry1Ea toxin, and Cry1Ac and Cry1Fa competition analyses in Anticarsia gemmatalis and Chrysodeixis includens. Scientific reports 9: 18201.
+ more infoNeonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci U S A 116: 16817-16822.
+ more infoCalvo-Agudo, M., J. González-Cabrera, Y. Picó, P. Calatayud-Vernich, A. Urbaneja, M. Dicke, and A. Tena.
link
Identification of new viral variants specific to the honey bee mite Varroa destructor. Experimental and Applied Acarology 79: 157-168
+ more infoHerrero, S., A. Millán-Leiva, S. Coll, R. M. González-Martínez, S. Parenti, and J. González-Cabrera
link
ICTV Virus Taxonomy Profile: Solinviviridae. J Gen Virol 100: 736-737
+ more infoBrown, K., I. Olendraite, S. M. Valles, A. E. Firth, Y. Chen, D. M. A. Guerin, Y. Hashimoto, S. Herrero, J. R. de Miranda, E. Ryabov, and C. Ictv Report.
link
Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores’ Susceptibility to Natural Pathogens? Applied and Environmental Microbiology 85: e01468-01418
+ more infoIdentification and expression analysis of the Spodoptera exigua neuropeptidome under different physiological conditions. Insect Mol Biol 28: 161-175.
+ more infoEngineering of the baculovirus expression system for optimized protein production. Appl Microbiol Biotechnol 103: 113-123.
+ more infoResistencia a las proteínas insecticidas de Bacillus thuringiensis. Boletín de la Sociedad Española de Entomología Aplicada 4: 36-40.
+ more infoFerré, J.
ICTV Virus Taxonomy Profile: Polycipiviridae. J Gen Virol 100: 554-555.
+ more infoOlendraite, I., K. Brown, S. M. Valles, A. E. Firth, Y. Chen, D. M. A. Guerin, Y. Hashimoto, S. Herrero, J. R. de Miranda, E. Ryabov, and C. Ictv Report
link
Effect of mass rearing on the genetic diversity of the predatory mite Amblyseius swirskii. Entomologia Experimentalis et Applicata 167: 670-681.
+ more infoPaspati, A., K. B. Ferguson, E. C. Verhulst, A. Urbaneja, J. González‐Cabrera, and B. A. Pannebakker.
link
Improvement of baculovirus as protein expression vector and as biopesticide by CRISPR/Cas9 editing. Biotechnol Bioeng 116: 2823-2833
+ more infoStructural domains of the Bacillus thuringiensis Vip3Af protein unraveled by tryptic digestion of alanine mutants. Toxins (Basel) 11
+ more infoThe Spodoptera exigua ABCC2 Acts as a Cry1A Receptor Independently of its Nucleotide Binding Domain II. Toxins (Basel) 11.
+ more infoToxicity of five Cry proteins against the insect pest Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae). J Invertebr Pathol 169: 107295.
+ more infoHighly efficient production of rabies virus glycoprotein G ectodomain in Sf9 insect cells. 3 Biotech 9: 385.
+ more infoTargovnik, A. M., A. Ferrari, G. J. Mc Callum, M. B. Arregui, I. Smith, L. F. Bracco, V. Alfonso, M. G. Lopez, M. Martinez-Solis, S. Herrero, and M. V. Miranda.
link
Reduced phytophagy in sugar-provisioned mirids. Journal of Pest Science 92: 1139-1148.
+ more info2018
New PCR–RFLP diagnostics methodology for detecting Varroa destructor resistant to synthetic pyrethroids. J Pest Sci 91(3): 937-941
+ more infoCharacterization of two groups of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) C-type lectins and insights into their role in defense against the densovirus JcDV. Arch Insect Biochem Physiol 97.
+ more infoIsolating, characterizing and identifying a Cry1Ac resistance mutation in field populations of Helicoverpa punctigera. Scientific Reports: 8(9).
+ more infoThe Insecticidal Bacterial Toxins in Modern Agriculture
+ more infoGenetic variability and pyrethroid susceptibility of the parasitic honey bee mite Varroa destructor (Acari: Varroidae) in Iran. Exp Appl Acarol 76(1): 139-148
+ more infoA single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. J Pest Sci 91(3): 1137-1144
+ more infoGonzález-Cabrera, J., H. Bumann, S. Rodríguez-Vargas, P. J. Kennedy, K. Krieger, G. Altreuther, A. Hertel, G. Hertlein, R. Nauen, and M. S. Williamson.
link
A genomic and proteomic approach to identify and quantify the expressed Bacillus thuringiensis proteins in the supernatant and parasporal crystal. Toxins (Basel) 10: 18
+ more infoAnalysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. J Invertebr Pathol 155: 64-70
+ more infoGomis-Cebolla, J; Wang, Y; Quan, Y; He, K; Walsh, T.; James, B.; Downes, S.; Kain, W.; Wang, P; Leonard, K; Morgan, T; Oppert, B; Ferré, J
link
Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects. Scientific Reports May 15; 8(1):7539
+ more infoRole of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. Insect Biochem Mol Biol 101: 47-56
+ more infoMartínez-Solís, M; Pinos, D; Endo, H; Portugal, L; Sato, R; Ferré, J; Herrero, S; Hernández-Martínez, P
link
Artefactual band patterns by SDS-PAGE of the Vip3Af protein in the presence of proteases mask the extremely high stability of this protein. Internat J Biol Macromol 120: 59-65
+ more infoEfficacy and resistance management potential of a modified Vip3C protein for control of Spodoptera frugiperda in maize. Scientific Reports 8 : 16204
+ more infoCharacterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins. PLoS One 13(11): e0206813
+ more infoInsecticidal Activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker). Toxins (Basel) 10: 454
+ more infoSexado del mochuelo europeo Athene noctua vidalii por biometría en el este de España
+ more infoA non-venomous sPLA2 of a lepidopteran insect: Its physiological functions in development and immunity. Developmental & Comparative Immunology 89: 83-92.
+ more infoCharacterization of new Bacillus thuringiensis strains from Iran, based on cytocidal and insecticidal activity, proteomic analysis and gene content. BioControl 63: 807-818
+ more infoCharacterization of two groups of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) C-type lectins and insights into their role in defense against the densovirus JcDV. Archives of Insect Biochemistry and Physiology 97: e21432.
+ more info2017
Insights into the structure of the Vip3Aa insecticidal protein by protease digestion analysis. Toxins(Basel): 9(4).
+ more infoEphestia kuehniella tolerance to Bacillus thuringiensis Cry1Aa is associated with reduced oligomer formation. Biochem Biophys Res Commun 482: 808-813.
+ more infoAssessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria. Toxins (Basel) 9.
+ more infoEditorial for Special Issue: The Insecticidal Bacterial Toxins in Modern Agriculture. Toxins (Basel) 9.
+ more infoHigh Bacterial Agglutination Activity in a Single-CRD C-Type Lectin from Spodoptera exigua (Lepidoptera: Noctuidae). Biosensors (Basel) 7.
+ more infoInsecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J Invertebr Pathol 142: 60-67.
+ more infoGomis-Cebolla, J., I. Ruiz de Escudero, N. M. Vera-Velasco, P. Hernández-Martínez, C. S. Hernández-Rodríguez, T. Ceballos, L. Palma, B. Escriche, P. Caballero, and J. Ferré.
link
Resistencia a acaricidas en Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae): papel de la modificación del sitio diana. Boletín de la Sociedad Española de Entomología Aplicada 2: 39-42.
+ more infoGonzález-Cabrera, J., S. Rodríguez-Vargas, T. G. Emyr Davies, L. M. Field, D. Schmehl, J. D. Ellis, K. Krieger, and M. S. Williamson.
link
Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific reports 7: 11816.
+ more infoGouin, A., A. Bretaudeau, K. Nam, S. Gimenez, J. M. Aury, B. Duvic, F. Hilliou, N. Durand, N. Montagne, I. Darboux, S. Kuwar, T. Chertemps, D. Siaussat, A. Bretschneider, Y. Mone, S. J. Ahn, S. Hanniger, A. G. Grenet, D. Neunemann, F. Maumus, I. Luyten, K. Labadie, W. Xu, F. Koutroumpa, J. M. Escoubas, A. Llopis, M. Maibeche-Coisne, F. Salasc, A. Tomar, A. R. Anderson, S. A. Khan, P. Dumas, M. Orsucci, J. Guy, C. Belser, A. Alberti, B. Noel, A. Couloux, J. Mercier, S. Nidelet, E. Dubois, N. Y. Liu, I. Boulogne, O. Mirabeau, G. Le Goff, K. Gordon, J. Oakeshott, F. L. Consoli, A. N. Volkoff, H. W. Fescemyer, J. H. Marden, D. S. Luthe, S. Herrero, D. G. Heckel, P. Wincker, G. J. Kergoat, J. Amselem, H. Quesneville, A. T. Groot, E. Jacquin-Joly, N. Negre, C. Lemaitre, F. Legeai, E. d'Alencon, and P. Fournier.
link
Protocol for the evaluation of data concerning the necessity of the application of insecticide active substances to control a serious danger to plant health which cannot be contained by other available means, including non‐chemical methods. EFSA Supporting Publications 14.
+ more infoGrégoire, J. C., J. A. Jaques Miret, J. González‐Cabrera, U. Heimbach, A. Lucchi, C. Gardi, Z. Erdos, and I. Koufakis.
link
Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Scientific reports 7: 16245.
+ more infoNovel RNA viruses producing simultaneous covert infections in Ceratitis capitata. Correlations between viral titers and host fitness, and implications for SIT programs. J Invertebr Pathol 143: 50-60.
+ more infoLlopis-Giménez, A., R. María González, A. Millán-Leiva, M. Catalá, E. Llacer, A. Urbaneja, and S. Herrero.
link
Expression of the lef5 gene from Spodoptera exigua multiple nucleopolyhedrovirus contributes to the baculovirus stability in cell culture. Appl Microbiol Biotechnol 101: 7579-7588.
+ more infoBacillus thuringiensis Vip3Aa toxin resistance in Heliothis virescens (Lepidoptera: Noctuidae). Appl Environ Microbiol 83: 9
+ more infoICTV Virus Taxonomy Profile: Iflaviridae. J Gen Virol 98: 527-528.
+ more infoValles, S. M., Y. Chen, A. E. Firth, D. M. A. Guerin, Y. Hashimoto, S. Herrero, J. R. de Miranda, E. Ryabov, and C. Ictv Report.
link
ICTV Virus Taxonomy Profile: Dicistroviridae. J Gen Virol 98: 355-356.
+ more infoValles, S. M., Y. Chen, A. E. Firth, D. M. Guerin, Y. Hashimoto, S. Herrero, J. R. de Miranda, E. Ryabov, and C. Ictv Report.
link
2016
Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc Natl Acad Sci U S A 113: 9486-9491.
+ more infoCaccia, S., I. Di Lelio, A. La Storia, A. Marinelli, P. Varricchio, E. Franzetti, N. Banyuls, G. Tettamanti, M. Casartelli, B. Giordana, J. Ferré, S. Gigliotti, D. Ercolini, and F. Pennacchio.
link
Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding. Scientific reports 6: 24311.
+ more infoCorrection for Chakroun et al., Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80: iii.
+ more infoBacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80: 329-350.
+ more infoGasmin (BV2-5), a polydnaviral-acquired gene in Spodoptera exigua. Trade-off in the defense against bacterial and viral infections. Dev Comp Immunol 56: 37-45.
+ more infoInsecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J Invertebr Pathol.
+ more infoGomis-Cebolla, J., I. Ruiz de Escudero, N. M. Vera-Velasco, P. Hernández-Martínez, C. S. Hernández-Rodríguez, T. Ceballos, L. Palma, B. Escriche, P. Caballero, and J. Ferré.
link
Novel Mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA. PLoS One 11: e0155332.
+ more infoGonzález-Cabrera, J., S. Rodríguez-Vargas, T. G. Davies, L. M. Field, D. Schmehl, J. D. Ellis, K. Krieger, and M. S. Williamson.
link
Unshared binding sites for Bacillus thuringiensis Cry3Aa and Cry3Ca proteins in the weevil Cylas puncticollis (Brentidae). Toxicon 122: 50-53.
+ more infoSusceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp. Curr Opin Insect Sci 15: 89-96.
+ more infoIflavirus increases its infectivity and physical stability in association with baculovirus. PeerJ 4: e1687.
+ more infoJakubowska, A. K., R. Murillo, A. Carballo, T. Williams, J. W. M. van Lent, P. Caballero, and S. Herrero.
link
A novel baculovirus-derived promoter with high activity in the baculovirus expression system. PeerJ 4: e2183.
+ more infoSusceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. J Invertebr Pathol 141: 1-5.
+ more info2015
Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. PLoS ONE 10: e0125991.
+ more infoBinding analysis of Bacillus thuringiensis Cry1 proteins in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). J Invertebr Pathol 127: 32-34
+ more infoDavolos, C. C., P. Hernández-Martínez, P. C. B. Crialesi-Legori, J. A. Desiderio, J. Ferré, B. Escriche, and M. V. F. Lemos..
link
Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses. PLoS Genet 11: e1005470.
+ more infoGasmi, L., H. Boulain, J. Gauthier, A. Hua-Van, K. Musset, A. K. Jakubowska, J. M. Aury, A. N. Volkoff, E. Huguet, S. Herrero, and J. M. Drezen
link
In search of pathogens: transcriptome-based identification of viral sequences from the pine processionary moth (Thaumetopoea pityocampa). Viruses 7: 456-479.
+ more infoJakubowska, A. K., R. Nalcacioglu, A. Millán-Leiva, A. Sanz-Carbonell, H. Muratoglu, S. Herrero, and Z. Demirbag..
link
A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella. Insect Mol Biol 24: 624-633.
+ more infoDigestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae. J Insect Physiol 78: 69-77
+ more info2014
Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Journal of Insect Physiology 67: 76-84.
+ more infoIn vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I-radiolabeling. Appl Environ Microbiol 80: 6258-6265.
+ more infoSusceptibility to Cry proteins of a Spanish Ostrinia nubilalis glasshouse population repeatedly sprayed with Bacillus thuringiensis formulations. Journal of Applied Entomology 138: 78-86.
+ more infoShared binding sites for the Bacillus thuringiensis proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African sweet potato pest Cylas puncticollis (Brentidae). Appl Environ Microbiol 80: 7545-7550.
+ more infoHernández-Martínez, P., N. Mara Vera-Velasco, M. Martínez-Solís, M. Ghislain, J. Ferré, and B. Escriche.
link
Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hubner). J Invertebr Pathol 120: 1-3.
+ more infoSimultaneous occurrence of covert infections with small RNA viruses in the lepidopteran Spodoptera exigua. . J Invertebr Pathol 121: 56-63.
+ more infoJakubowska, A. K., M. D'Angiolo, R. M. González-Martínez, A. Millán-Leiva, A. Carballo, R. Murillo, P. Caballero, and S. Herrero.
link
Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. Plos One 9: e107196.
+ more infoLemes, A. R. N., C. C. Davolos, P. C. B. C. Legori, O. A. Fernandes, J. Ferré, M. V. F. Lemos, and J. A. Desiderio.
link
Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites. Pest Manag Sci 70: 369-377.
+ more infoO'Reilly, A. O., M. S. Williamson, J. González-Cabrera, A. Turberg, L. M. Field, B. A. Wallace, and T. G. Davies.
link
ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. Bmc Biology 12: 46.
+ more infoPark, Y., R. M. González-Martínez, G. Navarro-Cerrillo, M. Chakroun, Y. Kim, P. Ziarsolo, J. Blanca, J. Canizares, J. Ferré, and S. Herrero.
link
A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol 117: 51-55.
+ more infoRuiz de Escudero, I., N. Banyuls, Y. Bel, M. Maeztu, B. Escriche, D. Muñoz, P. Caballero, and J. Ferré.
link
Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J Invertebr Pathol 122: 22-27.
+ more info2013
Comprehensive Analysis of Gene Expression Profiles of the Beet Armyworm Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Vip3Aa Toxin. PLoS ONE 8: e81927. PM:24312604.
+ more infoThe sf32 unique gene of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a non-essential gene that could be involved in nucleocapsid organization in occlusion-derived virions. PLoS.ONE. 8: e77683.
+ more infoBeperet, I., G. Barrera, O. Simon, T. Williams, M. López-Ferber, L. Gasmi, S. Herrero, and P. Caballero.
link
Quantitative genetic analysis of Cry1Ab tolerance in Ostrinia nubilalis Spanish populations. J Invertebr Pathol 113: 220-227.
+ more infoMidgut aminopeptidase N isoforms from Ostrinia nubilalis: Activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. Insect Biochem Mol Biol 43: 924-935.
+ more infoAn amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor. PLoS ONE 8: e82941.
+ more infoResistance to Bt maize in Mythimna unipuncta (Lepidoptera: Noctuidae) is mediated by alteration in Cry1Ab protein activation. Insect Biochem Mol Biol 43: 635-643.
+ more infoGonzález-Cabrera, J., M. García, P. Hernández-Crespo, G. P. Farinós, F. Ortego, and P. Castañera.
link
Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J Invertebr Pathol 113: 78-81.
+ more infoShared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. Plos One 8: e68164.
+ more infoEncapsulation of the Bacillus thuringiensis secretable toxins Vip3Aa and Cry1Ia in Pseudomonas fluorescens. Biological Control 66: 159-165.
+ more infoIncrease in gut microbiota after immune suppression in baculovirus-infected larvae. PLoS.Pathog. 9: e1003379.
+ more infoA new gene superfamily of pathogen-response (repat) genes in Lepidoptera: Classification and expression analysis. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 164: 10-17.
+ more infoBiology, ecology and management of the South American tomato pinworm, Tuta absoluta, pp. 98-125. In J. E. Pena (ed.), Potential invasive pests of agricultural crops. Cabi, Wallingford.
+ more infoUrbaneja, A., N. Desneux, R. Gabarra, J. Arno, J. González-Cabrera, A. Mafra Neto, L. Stoltman, A. d. S. Pinto, and J. R. P. Parra.
link
2012
Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen. Appl Environ Microbiol 78: 5690-5698.
+ more infoCaccia, S., W. J. Moar, J. Chandrashekhar, C. Oppert, K. J. Anilkumar, J. L. Jurat-Fuentes, and J. Ferré.
link
Lack of Cry1Fa binding to the midgut brush border membrane in a resistant colony of Plutella xylostella moths with a mutation in the ABCC2 locus. Appl Environ Microbiol 78: 6759-6761.
+ more infoHernández-Martínez, P., C. S. Hernández-Rodríguez, V. Krishnan, N. Crickmore, B. Escriche, and J. Ferré.
link
Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species. Appl Environ Microbiol 78: 4048-4050.
+ more infoGenome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua. J Invertebr Pathol 109: 127-133.
+ more infoFunctional interactions between members of the REPAT family of insect pathogen-induced proteins. Insect Molecular Biology 21: 335-342.
+ more infoVip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis. Appl Environ Microbiol 78: 7163-7165.
+ more infoPalma, L., C. S. Hernández-Rodríguez, M. Maeztu, P. Hernández-Martínez, I. Ruiz de Escudero, B. Escriche, D. Munoz, J. Van Rie, J. Ferré, and P. Caballero.
link
The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect Biochem Mol Biol 42: 557-570.
+ more infoPascual, L., A. K. Jakubowska, J. M. Blanca, J. Canizares, J. Ferré, G. Gloeckner, H. Vogel, and S. Herrero.
link
Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68: 1215-1222.
+ more infoPdl1 is a putative lipase that enhances Photorhabdus toxin complex secretion. PLoS Pathog 8: e1002692.
+ more infoYang, G., C. S. Hernández-Rodríguez, M. L. Beeton, P. Wilkinson, R. H. Ffrench-Constant, and N. R. Waterfield.
link
Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. Journal of Applied Entomology 136: 401-409.
+ more info2011
Occurrence, characterization and insecticidal activity of Bacillus thuringiensis strains isolated from argan fields in Morocco. Environmental Technology 32: 1383-1391.
+ more infoAboussaid, H., J. C. Vidal-Quist, K. Oufdou, S. El Messoussi, P. Castañera, and J. González-Cabrera.
link
Quantitative real-time PCR with SYBR Green detection to assess gene duplication in insects: Study of gene dosage in Drosophila melanogaster (Diptera) and in Ostrinia nubilalis (Lepidoptera). BMC Res Notes 4: 84.
+ more infoCross-resistance and mechanism of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. J Invertebr Pathol 107: 185-192.
+ more infoCrespo, A. L. B., A. Rodrigo-Simón, H. A. A. Siqueira, E. J. G. Pereira, J. Ferré, and B. D. Siegfried.
link
Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol 56: 71-80.
+ more infoProteolytic processing of Bacillus thuringiensis Cry3Ca toxin by different protease digestion treatments. IOBC/wprs Bulletin 66: 79-82.
+ more infoMartínez-Solis, M., P. Hernández-Martínez, and B. Escriche..
The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. Biocontrol 56: 883-891.
+ more infoActivity of Cyt1Aa protein from Bacillus thuringiensis (Berliner) subsp. israelensis against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). IOBC WPRS Bulletin 62: 234.
+ more info2010
Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species. Plos One 5: e9975.
+ more infoCaccia, S., C. S. Hernández-Rodríguez, R. J. Mahon, S. Downes, W. James, N. Bautsoens, J. Van Rie, and J. Ferré
link
Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hubner) and Bombyx mori (L.): sequences, mapping and expression. Insect Biochem Mol Biol 40: 506-515.
+ more infoBiological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83: 197-215.
+ more infoDesneux, N., E. Wajnberg, K. A. G. Wyckhuys, G. Burgio, S. Arpaia, C. A. Narvaez-Vásquez, J. González-Cabrera, D. C. Ruescas, E. Tabone, J. Frandon, J. Pizzol, C. Poncet, T. Cabello, and A. Urbaneja
link
Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. Plos One 5.
+ more infoHernández-Martínez, P., G. Navarro-Cerrillo, S. Caccia, R. A. de Maagd, W. J. Moar, J. Ferré, B. Escriche, and S. Herrero.
link
Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environmental Microbiology 12: 2730-2737.
+ more infoHost-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed. J.Gen.Virol. 91: 898-906.
+ more infoDownregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. Journal of Virology 84: 2547-2555.
+ more infoRNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J.Insect Physiol.
+ more infoTerenius, O., A. Papanicolaou, J. S. Garbutt, I. Eleftherianos, H. Huvenne, S. Kanginakudru, M. Albrechtsen, C. An, J. L. Aymeric, A. Barthel, P. Bebas, K. Bitra, A. Bravo, F. Chevalier, D. P. Collinge, C. M. Crava, R. A. de Maagd, B. Duvic, M. Erlandson, I. Faye, G. Felfoldi, H. Fujiwara, R. Futahashi, A. S. Gandhe, H. S. Gatehouse, L. N. Gatehouse, J. M. Giebultowicz, I. Gomez, C. J. Grimmelikhuijzen, A. T. Groot, F. Hauser, D. G. Heckel, D. D. Hegedus, S. Hrycaj, L. Huang, J. J. Hull, K. Iatrou, M. Iga, M. R. Kanost, J. Kotwica, C. Li, J. Li, J. Liu, M. Lundmark, S. Matsumoto, M. Meyering-Vos, P. J. Millichap, A. Monteiro, N. Mrinal, T. Niimi, D. Nowara, A. Ohnishi, V. Oostra, K. Ozaki, M. Papakonstantinou, A. Popadic, M. V. Rajam, S. Saenko, R. M. Simpson, M. Soberon, M. R. Strand, S. Tomita, U. Toprak, P. Wang, C. W. Wee, S. Whyard, W. Zhang, J. Nagaraju, R. H. ffrench-Constant, S. Herrero, K. Gordon, L. Swevers, and G. Smagghe
link
Cyt1Aa protein from Bacillus thuringiensis (Berliner) serovar israelensis is active against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Pest Manag Sci 66: 949-955.
+ more info2009
Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance. Insect Biochem Mol Biol 39: 218-223.
+ more infoBacillus thuringiensis susceptibility variation among Ostrinia nubilalis populations. IOBC/wprs Bulletin 45.
+ more infoBroad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. Pest Manag Sci 65: 645-650.
+ more infoBinding of individual Bacillus thuringiensis Cry proteins to the olive moth Prays oleae (Lepidoptera: Yponomeutidae). J Invertebr Pathol 100: 131-133.
+ more infoScreening and identification of vip genes in Bacillus thuringiensis strains. Journal of Applied Microbiology 107: 219-225.
+ more infoEcological distribution and characterization of four collections of Bacillus thuringiensis strains. Journal of Basic Microbiology 49: 152-157.
+ more infoGenomic structure and promoter analysis of pathogen-induced repat genes from Spodoptera exigua. Insect Molecular Biology 18: 77-85.
+ more infoEnhancing the multiplication of nucleopolyhedrovirus in vitro by manipulation of the pH. J Virol Methods 161: 254-258.
+ more infoInteraction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Appl Environ Microbiol 75: 2236-2237.
+ more infoSimple and rapid method for PCR characterization of large Bacillus thuringiensis strain collections. Curr Microbiol 58: 421-425.
+ more infoDiversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. J Microbiol Biotechnol 19: 749-759.
+ more info2008
Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol 74: 462-469.
+ more infoAnilkumar, K. J., A. Rodrigo-Simón, J. Ferré, M. Pusztai-Carey, S. Sivasupramaniam, and W. J. Moar.
link
Exploring the potential of corn borers to develop resistance to Bt-corn in Europe. GMOs in integrated plant production. IOBC wprs Bulletin 33: 1-6.
+ more infoFerré, J., J. González-Cabrera, Y. Bel, and B. Escriche..
Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. J Invertebr Pathol 97: 245-250.
+ more infoSpecific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species. Appl Environ Microbiol 74: 7654-7659.
+ more infoSelective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dissociated epithelial cells from Bombyx mori. Biochemical Journal 409: 215-221.
+ more infoField-evolved resistance to Bt toxins. Nature Biotechnology 26: 1072-1074..
+ more infoBacillus thuringiensis Cry1Ac toxin-binding and pore-forming activity in brush border membrane vesicles prepared from anterior and posterior midgut regions of lepidopteran larvae. Appl Environ Microbiol 74: 1710-1716.
+ more info2007
REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua Insect Biochem Mol Biol 37: 1109-1118.
+ more infoLeucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut. Journal of Membrane Biology 214: 157-164.
+ more infoPotential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Appl Environ Microbiol 73: 337-340.
+ more infoMechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl Environ Microbiol 73: 1199-1207.
+ more infoWang, P., J.-Z. Zhao, A. Rodrigo-Simón, W. Kain, A. F. Janmaat, A. M. Shelton, J. Ferré, and J. Myers
link
2006
Common genomic structure for the Lepidoptera cadherin-like genes. Gene 381: 71-80.
+ more infoToxicity and mode of action of Bacillus thuringiensis Cry proteins in the Mediterranean corn borer, Sesamia nonagrioides (Lefebvre). Appl. Environ. Microbiol. 72: 2594-2600.
+ more infoGonzález-Cabrera, J., G. P. Farinós, S. Caccia, M. Díaz-Mendoza, P. Castañera, M. G. Leonardi, B. Giordana, and J. Ferré..
link
Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera : noctuidae). Appl Environ Microbiol 72: 437-442.
+ more infoLack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Appl Environ Microbiol 72: 1595-1603.
+ more infoRodrigo-Simón, A., R. de Maagd, C. Avilla, P. Bakker, J. Molthoff, J. González-Zamora, and J. Ferré.
link
Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Appl Environ Microbiol 72: 4796-4804.
+ more infoRuiz de Escudero, I., A. Estela, M. Porcar, C. Martinez, J. A. Oguiza, B. Escriche, J. Ferré, and P. Caballero.
link
Analyses of Cry1Ab binding in resistant and susceptible strains of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). Appl Environ Microbiol 72: 5318-5324.
+ more info2005
Toxicity of several d-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) from Spain. J Invertebr Pathol 90: 51-54.
+ more infoCommon receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Appl Environ Microbiol 71: 5627-5629.
+ more infoIsolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia. J Invertebr Pathol 88: 8-16.
+ more infoBacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics 6.
+ more infoIdentification and recombinant expression of a novel chymotrypsin from Spodoptera exigua Insect Biochem.Mol.Biol. 35: 1073-1082.
+ more info2004
Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol 70: 1378-1384.
+ more infoLyophilization of lepidopteran midguts: a preserving method for Bacillus thuringiensis toxin binding studies. J Invertebr Pathol 85: 182-187.
+ more infoMutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochemical Journal 384: 507-513.
+ more infoBinding analyses of Cry1Ab and Cry1Ac with membrane vesicles from Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis. Biochem Biophys Res Commun 323: 52-57.
+ more infoLi, H., J. González-Cabrera, B. Oppert, J. Ferré, R. A. Higgins, L. L. Buschman, G. A. Radke, K. Y. Zhu, and F. Huang.
link
2003
Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm (Pectinophora gossypiella). Insect Biochem Mol Biol 33: 929-935.
+ more infoCorrelation between serovars of Bacillus thuringiensis and type I beta-exotoxin production. J Invertebr Pathol 82: 57-62.
+ more infOHernández, C., C. Martínez, M. Porcar, P. Caballero, and J. Ferré.
2002
Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology 47: 501-533.
+ more infoExtent of variation of the Bacillus thuringiensis toxin reservoir: The case of the geranium bronze, Cacyreus marshalli Butler (Lepidoptera : Lycaenidae). Appl Environ Microbiol 68: 4090-4094.
+ more info2001
Variation in susceptibility to Bacillus thuringiensis toxins among unselected strains of Plutella xylostella. Appl Environ Microbiol 67: 4610-4613
+ more infoGonzález-Cabrera, J., S. Herrero, A. H. Sayyed, B. Escriche, Y. B. Liu, S. K. Meyer, D. J. Wright, B. E. Tabashnik, and J. Ferré
link
High genetic variability for resistance to Bacillus thuringiensis toxins in a single population of diamondback moth. Appl Environ Microbiol 67: 5043-5048.
+ more infoUpdate on the detection of beta-exotoxin in Bacillus thuringiensis strains by HPLC analysis. Journal of Applied Microbiology 90: 643-647.
+ more infoMannose phosphate isomerase isoenzymes in Plutella xylostella support common genetic bases of resistance to Bacillus thuringiensis toxins in lepidopteran species. Appl Environ Microbiol 67: 979-981.
+ more infoMode of inheritance and stability of resistance to Bacillus thuringiensis var kurstaki in a diamondback moth (Plutella xylostella) population from Malaysia. Pest Manag Sci 56: 743-748.
+ more infoSayyed, A., J. Ferré, and D. Wright.
Cry1Ac protoxin from Bacillus thuringiensis sp. kurstaki HD73 binds to surface proteins in the mouse small intestine. Biochem Biophys Res Commun 271: 54-58.
+ more infoVázquez-Padrón, R. I., J. González-Cabrera, C. García-Tovar, L. Neri-Bazán, R. López-Revilla, M. Hernández, L. Moreno-Fierro, and G. A. de la Riva.
link
Comparison of different methodologies for binding assays of Bacillus thuringiensis toxins to membrane vesicles from insect midguts. J Invertebr Pathol 78: 275-277.
+ more infoDifferent mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth. Appl Environ Microbiol 67: 1085-1089.
+ more infoShared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins. Appl Environ Microbiol 67: 5729-5734.
+ more info2000
Screening for Bacillus thuringiensis crystal proteins active against the cabbage looper, Trichoplusia ni. J Invertebr Pathol 76: 70-75.Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Appl Environ Microbiol 65: 1900-1903.
+ more infoCharacterization of Bacillus thuringiensis ser. balearica (Serotype H48) and ser. navarrensis (Serotype H50): Two novel serovars isolated in Spain. Curr Microbiol 40: 17-22.
+ more infoIriarte, J., V. Dumanoir, Y. Bel, M. Porcar, M. Ferrandis, M. Lecadet, J. Ferré, and P. Caballero.
link
Binding and toxicity of Bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth (Lepidoptera : Plutellidae). Journal of Economic Entomology 93: 1-6.
+ more infoGenetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Appl Environ Microbiol 66: 1509-1516.
+ more infoMode of inheritance and stability of resistance to Bacillus thuringiensis var kurstaki in a diamondback moth (Plutella xylostella) population from Malaysia. Pest Manag Sci 56: 743-748.
+ more infoSayyed, A., J. Ferré, and D. Wright.
Cry1Ac protoxin from Bacillus thuringiensis sp. kurstaki HD73 binds to surface proteins in the mouse small intestine. Biochem Biophys Res Commun 271: 54-58.
+ more infoVázquez-Padrón, R. I., J. González-Cabrera, C. García-Tovar, L. Neri-Bazán, R. López-Revilla, M. Hernández, L. Moreno-Fierro, and G. A. de la Riva.
link
Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. Appl.Environ.Microbiol. 66: 3784-3789
+ more infoZhao, J. Z., H. L. Collins, J. D. Tang, J. Cao, E. D. Earle, R. T. Roush, S. Herrero, B. Escriche, J. Ferré, and A. M. Shelton
link
1999
Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Appl Environ Microbiol 65: 1900-1903.
+ more infoDistribution of cryI, cryII and cryV genes within Bacillus thuringiensis isolates from Spain. Systematic and Applied Microbiology 22: 179-185.
+ more infoFerrandis, M., V. Juárez-Pérez, R. Frutos, Y. Bel, and J. Ferré.
Characterization of Bacillus thuringiensis serovar bolivia (serotype H63), a novel serovar isolated from the Bolivian high valleys. Letters in Applied Microbiology 28: 440-444.
+ more infoFerrandis, M., R. Andrew, M. Porcar, J. Iriarte, V. Cosmao-Dumanoir, M. Lecadet, P. Caballero, and J. Ferré.
link
Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera : Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Science and Technology 9: 239-246.
+ more infoIdentification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype H57) and iberica (serotype H59). Journal of Applied Microbiology 87: 640-648.
+ more info1998
Agrobacterium tumefaciens: a natural tool for plant transformation.
+ more infoOptimization of transgene expression in sugar-cane cells. Biotechnology Techniques 12: 793-796
+ more infoGonzález-Cabrera, J., A. Coego, A. F. Martínez-Gil, G. A. de la Riva, and R. I. Vázquez-Padrón.
link
Environmental distribution and diversity of Bacillus thuringiensis in Spain. Systematic and Applied Microbiology 21: 97-106.
+ more infoInsect resistance to Bacillus thuringiensis: uniform or diverse? Philos T Roy Soc B 353: 1751-1756.
+ more infoTabashnik, B., Y. Liu, T. Malvar, D. Heckel, L. Masson, and J. Ferré.
Biochemical characterization of the third domain from Bacillus thuringiensis Cry1A toxins. Biochemical and Molecular Biology International 45: 1011-1020.
+ more infoVázquez-Padrón, R. I., A. F. Martínez-Gil, C. Ayra-Pardo, J. González-Cabrera, D. L. Prieto-Samsonov, and G. A. de la Riva.
link
1997
Distribution, frequency and diversity of Bacillus thuringiensis in olive tree environments in Spain. Systematic and Applied Microbiology 20: 652-658.
+ more infoBel, Y., F. Granero, T. Alberola, M. Martínez-Sebastián, and J. Ferré.
Mitochondrial DNA sequence variation among geographic strains of diamondback moth (Lepidoptera: Plutellidae). Annals of the Entomological Society of America 90: 590-595.
+ more infoChang, W., B. Tabashnik, B. Artelt, T. Malvar, V. Ballester, J. Ferré, and G. Roderick.
Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Insect Biochem Mol Biol 27: 651-656.
+ more infoBacillus thuringiensis: from biodiversity to biotechnology. J Ind Microbiol Biotechnol 19: 202-219
+ more infoPrieto-Samsonov, D. L., R. I. Vázquez-Padrón, C. Ayra-Pardo, J. González-Cabrera, and G. A. de la Riva.
link
Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the United States of America 94: 12780-12785.
+ more infoTabashnik, B., Y. Liu, T. Malvar, D. Heckel, L. Masson, V. Ballester, F. Granero, J. Ménsua, and J. Ferré.
link
A change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp kurstaki and B. thuringiensissubsp aizawai. Appl Environ Microbiol 63: 1814-1819.
+ more infoWright, D., M. Iqbal, F. Granero, and J. Ferré.
1995
Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem Biophys Res Commun 212: 388-395.
+ more infoTesting suitability of brush border membrane vesicles prepared from whole larvae from small insects for binding studies with Bacillus thuringiensisCryIA(b) crystal protein. J Invertebr Pathol 65: 318-320.
+ more infoEscriche, B., F. Silva, and J. Ferré
Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiology Letters 132: 1-7.
+ more infoFerré, J., B. Escriche, Y. Bel, and J. Van Rie.
Inheritance of resistance to a Bacillus thuringiensis toxin in a field population of diamondback moth (Plutella xylostella). Pesticide Science 43: 115-120.
+ more infoMartínez-Ramírez, A., B. Escriche, M. Real, F. Silva, and J. Ferré.
1994
Lack of cross-resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistant to CryIA(b). Biocontrol Science and Technology 4: 437-443.
+ more infoBallester, V., B. Escriche, J. Ménsua, G. Riethmacher, and J. Ferré.
Occurrence of 3 different binding sites for Bacillus thuringiensis d-endotoxins in the midgut brush-border membrane of the potato tuber moth, Phthorimaea operculella (Zeller). Archives of Insect Biochemistry and Physiology 26: 315-327.
+ more infoEscriche, B., A. Martínez-Ramírez, M. Real, F. Silva, and J. Ferré.
Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins. Appl Environ Microbiol 60: 3840-3846
+ more info1992
Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proceedings of the National Academy of Sciences of the United States of America 89: 7986-7990
+ more info1991
Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proceedings of the National Academy of Sciences of the United States of America 88: 5119-5123.
+ more infoFerré, J., M. Real, J. Van Rie, S. Jansens, and M. Peferoen.
–